GREPhysics.NET
GR | # Login | Register
   
  GR9677 #59
Problem
GREPhysics.NET Official Solution    Alternate Solutions
This problem is still being typed.
Quantum Mechanics}Laser

Not much understanding of lasers is required to solve this one; the basic idea of the problem tests the relation between photon energy and energy from the laser. Recalling the equation E=hf=hc/\lambda\approx 12E-7/600E-9=2 eV, equates that to the energy (in eV) calculated from Pt = 10E3 \times 1E-15/1.602E-19. The answer comes out to choice (B).

See below for user comments and alternate solutions! See below for user comments and alternate solutions!
Alternate Solutions
insertphyspun
2011-05-26 13:46:20
Of course, the E=Pt approach is probably best, but I was going too fast to see that P=10kW. My alternate solution uses the uncertainty principle:

\Delta E \Delta t = h/4\pi

where E=nhc/\lambda. Thus,

n = \lambda/4\pi \Delta t = 5 \times 10^7

Close enough, and no need to convert Watts to eV/s.
Alternate Solution - Unverified
proctort
2009-09-10 20:00:28
First time posting, defaults to NEC apparently. This one is properly labeled:

Given that this answer is virtually illegible, I'm writing out my own answer:

The energy of a beam of light is E = n \frac{h c}{\lambda}, where n is the number of photons and \lambda is the wavelength. As power is defined as P=\frac{E}{t}, where t is the time over which energy is given off, we have P=n \frac{h c }{\lambda t}, which, solving for n gives n = \frac{P \lambda t}{h c}.

In SI units, P = 10^4 \mathrm{W}, \lambda = 6 \times 10^{-9} \mathrm{m}..., which gives
n = \frac{10^4 \cdot 6 \times 10^{-9} \cdot 10^{-15}}{6.6 \times 10^{-34} \cdot 3 \times 10^8} \approx \frac{1}{3}\times 10^8 \approx 10^7
Alternate Solution - Unverified
Comments
digitalhikes
2019-07-08 11:04:17
Happy to go to your post, i\\\\\\\'m by all accounts forward to more and more dependable articles and that i figure we have a tendency to as a full would like to convey such Brobdingnagian numbers of excellent articles, post like Hostpapa Promo Code 2019 to important to us. \\\\r\\\\nNEC
insertphyspun
2011-05-26 13:46:20
Of course, the E=Pt approach is probably best, but I was going too fast to see that P=10kW. My alternate solution uses the uncertainty principle:

\Delta E \Delta t = h/4\pi

where E=nhc/\lambda. Thus,

n = \lambda/4\pi \Delta t = 5 \times 10^7

Close enough, and no need to convert Watts to eV/s.
Setareh
2011-10-07 09:52:25
I think in this case you have forgotten "c" in denominator of n=lambda/4*pi*t. rnActually the real equation for n is:rnn=lambda/4*pi*c*trnif you put c= 3*10^8 , you will see that it is larger than the correct answer.rnI think you have to write: n<=lambda/4*pi*c*trnyou have only found the boundary, but the power will determine which n is eligible for this problem.
Alternate Solution - Unverified
proctort
2009-09-10 20:00:28
First time posting, defaults to NEC apparently. This one is properly labeled:

Given that this answer is virtually illegible, I'm writing out my own answer:

The energy of a beam of light is E = n \frac{h c}{\lambda}, where n is the number of photons and \lambda is the wavelength. As power is defined as P=\frac{E}{t}, where t is the time over which energy is given off, we have P=n \frac{h c }{\lambda t}, which, solving for n gives n = \frac{P \lambda t}{h c}.

In SI units, P = 10^4 \mathrm{W}, \lambda = 6 \times 10^{-9} \mathrm{m}..., which gives
n = \frac{10^4 \cdot 6 \times 10^{-9} \cdot 10^{-15}}{6.6 \times 10^{-34} \cdot 3 \times 10^8} \approx \frac{1}{3}\times 10^8 \approx 10^7
alisonsparkles
2012-10-02 01:57:42
Doesn't the wavelength = 600*10^-9? This gives me an answer of 1/3*10^10...
calcuttj
2014-09-20 07:21:37
Technically the wavelength is 6E-7 or 600E-9
Alternate Solution - Unverified
proctort
2009-09-10 19:53:33
Given that this answer is virtually illegible, I'm writing out my own answer:

The energy of a beam of light is  E = n \frac{h c}{\lambda}, where n is the number of photons and \lambda is the wavelength. As power is defined as P=\frac{E}{t}, where t is the time over which energy is given off, we have P=n \frac{h c }{\lambda t}, which, solving for n gives n = \frac{P \lambda t}{h c}.

In SI units, P = 10^4 \mathrm{W}, \lambda = 6 ^{-9} \mathrm{m}..., which gives
n = \frac{10^4 \cdot 6 \times 10^{-9} \cdot 10^{-15}}{6.6 \times 10^{-34} \cdot 3 \times 10^8} \approx \frac{1}{3}\times 10^8 \approx 10^7
NEC
isina
2008-10-18 13:17:55
where does that 1.602E-19 come from?
akbar5223
2008-10-28 08:12:41
The laser power is given in W=J/s, so it is necessary to convert the power from J/s to eV/s, where 1 eV = 1.602E-19 J.
naroays
2008-11-03 02:41:15
Why should we convert to eV/s?

The SI unit of energy is Joules, and \frac{\hbar c}{\lambda} is in Joules, as is Power*time, because it's Joules/second * second = Joules
naroays
2008-11-03 02:51:08
Ah, I just noticed the soln in the website doesn't use SI units. Nevermind
Answered Question!

Post A Comment!
You are replying to:
Of course, the E=Pt approach is probably best, but I was going too fast to see that P=10kW. My alternate solution uses the uncertainty principle: \Delta E \Delta t = h/4\pi where E=nhc/\lambda. Thus, n = \lambda/4\pi \Delta t = 5 \times 10^7 Close enough, and no need to convert Watts to eV/s.

Username:
Password:
Click here to register.
This comment is best classified as a: (mouseover)
 
Mouseover the respective type above for an explanation of each type.

Bare Basic LaTeX Rosetta Stone

LaTeX syntax supported through dollar sign wrappers $, ex., $\alpha^2_0$ produces .
type this... to get...
$\int_0^\infty$
$\partial$
$\Rightarrow$
$\ddot{x},\dot{x}$
$\sqrt{z}$
$\langle my \rangle$
$\left( abacadabra \right)_{me}$
$\vec{E}$
$\frac{a}{b}$
 
The Sidebar Chatbox...
Scroll to see it, or resize your browser to ignore it...