GR0177 #95
|
|
|
Alternate Solutions |
RusFortunat 2015-10-16 22:17:54 | What if we simply use the fact that on the border, or . Applying this to our conditions we get . |  | fcarter 2008-10-13 17:16:57 | Another one where limits are the fast way. For K->1, E->E. For K->inf, E->0. Only answer that satisfies is A. |  | Mexicana 2007-10-02 17:57:24 | Another way to increase your chances of getting it right is by elimination of choices B, C and D since using dimensional analysis only choice A and E have the correct dimensions of electric field ( is dimensionless). If with this you also remember the fact that a dielectric under an applied electric field, induces an internal field so that the total field inside decreases, then only choice A remains (as this is the only one which would decrease the original field ). |  | herrphysik 2006-10-02 18:42:02 | Just use the equation (4.35 in Griffiths) where is the relative permittivity. Plug in the given to get the correct answer. |  |
|
Comments |
RusFortunat 2015-10-16 22:17:54 | What if we simply use the fact that on the border, or . Applying this to our conditions we get .
RusFortunat 2015-10-16 22:20:53 |
D: in preview it was more nice
|
|  | johnVay 2013-10-16 19:06:28 | dielectics (like in capacitors) increasing rearranging their internal charges to oppose
the E field. in the limit they are conductors where they rearrange perfectly.
the order:
vacuum - dielectic - conductor
dielectrics always scaling the electric field by kappa. this leaves a and b, you need a little more to recognize that B has an extra factor of epsilon |  | fcarter 2008-10-13 17:16:57 | Another one where limits are the fast way. For K->1, E->E. For K->inf, E->0. Only answer that satisfies is A.
f4hy 2009-11-07 00:27:13 |
Doesn't (B) satisfy those limits as well?
|
|  | Mexicana 2007-10-02 17:57:24 | Another way to increase your chances of getting it right is by elimination of choices B, C and D since using dimensional analysis only choice A and E have the correct dimensions of electric field ( is dimensionless). If with this you also remember the fact that a dielectric under an applied electric field, induces an internal field so that the total field inside decreases, then only choice A remains (as this is the only one which would decrease the original field ).
Moush 2010-09-18 15:55:06 |
Choice C has the same units as A and E so you can't eliminate it based only on dimensional analysis, but it's intuitive that < .
|
|  | Mexicana 2007-10-02 17:52:53 | Another way to increase your chances of getting it right is by elimination of choices B, C and D since using dimensional analysis only choice A and E have the correct dimensions of electric field ( is dimensionless). |  | herrphysik 2006-10-02 18:42:02 | Just use the equation (4.35 in Griffiths) where is the relative permittivity. Plug in the given to get the correct answer. |  |
|
Post A Comment! |
|
Bare Basic LaTeX Rosetta Stone
|
LaTeX syntax supported through dollar sign wrappers $, ex., $\alpha^2_0$ produces .
|
type this... |
to get... |
$\int_0^\infty$ |
 |
$\partial$ |
 |
$\Rightarrow$ |
 |
$\ddot{x},\dot{x}$ |
 |
$\sqrt{z}$ |
 |
$\langle my \rangle$ |
 |
$\left( abacadabra \right)_{me}$ |
_{me}) |
$\vec{E}$ |
 |
$\frac{a}{b}$ |
 |
|
|
|
|
The Sidebar Chatbox...
Scroll to see it, or resize your browser to ignore it... |
|
|